Indian Statistical Institute, Bangalore

B. Math.(Hons.) I Year, First Semester Semesteral Examination Analysis -I

Time: 3 hours November 27, 2009 Instructor: Pl.Muthuramalingam

The Paper has 50 marks. Max marks you can get is 40

- 1. Let y be any irrational number in [0, 1]. Let $\frac{p_n}{q_n} \longrightarrow y$, p_n, q_n are positive integers with $gcd\{p_n, q_n\} = 1$. Show that $q_n \longrightarrow \infty$. [3]
- 2. Let $f : [0, 1] \longrightarrow [0, \infty)$ be any function assume that there exists $M \ge 0$ such that for all subsets $\{x_1, x_2, \dots, x_k\}$ of [0, 1], one has $f(x_1) + f(x_2) + \dots + f(x_k) \le M$. Show that

$$G = \{x : f(x) \neq 0\} \text{ is a countable set.}$$

$$[2]$$

- 3. Let f be a bounded increasing function on (0,1). Let x_0 be in (0,1). Show that the left limit for f at x_0 viz $\lim_{x \to x_0} \{f(x) : x < x_0\}$ exists and $= \sup_{x < x_0} f(x).$ [2]
- 4. Let $g : [0,1] \longrightarrow R$ be any continous function with g(0) < 0 < g(1). Show that g assumes the value 0. [3]
- 5. Let $f : R \longrightarrow R$ be any infinitely differentiable function. State and prove Taylor's theorem on the interval $[x_0, x_0+h]$ involving $f, f', f^{(2)}, \cdots, f^{(n+1)}$ for any $n \ge 1$. [5]
- 6. Let $f : [a, b] \longrightarrow R$ be continuous, differentiable and f' be continuous. Show that $\lim_{\delta \longrightarrow 0} \sup_{a \le x \le b 0} \sup_{|t-x| \le \delta} \left| \frac{f(t) - f(x)}{t-x} - f'(x) \right| = 0$ [2]
- 7. Let a_1, a_2, \cdots be a sequence of reals converging to 0. Let $\alpha : \{1, 2, 3, \cdots\} \longrightarrow \{1, 2, 3, \cdots\}$ be any 1-1 and onto map. Put $b_j = a_{\alpha(j)}$. Show that $b_j \longrightarrow 0$. [2]
- 8. Let a and b be real numbers. If the series $(a+b)+(a+2b)+(a+3b)+\cdots$ is convergent, then show that b=0 and a=0. [2]
- 9. Let A, B be bounded subsets of $[0, \infty)$. Let $C = \{ab : a \in A, b \in B\}$. Let $x = \sup A, y = \sup B, z = \sup C$. Note that x need not be in A and y need not be in B. Show that z = xy. [2]

- 10. (a) Let a₁, a₂, ... be a sequence with a_j ≥ 0. Let ∑₁[∞] a_j be convergent let n₁ < n₂ < n₃ < ... be increasing sequence of natural numbers let b_j = a_{nj} Show that ∑ b_j is convergent. [2]
 (b) Give an example of a real sequence x₁, x₂, ... and a subsequence x_{n2}, x_{n2} ... such that ∑ x_j is convergent and ∑ x_{nj} is not convergent prove your claim.
- 11. Let $a_j > 0$ for $j = 1, 2, 3, \cdots$. Assume that $\frac{a_{j+1}}{a_j}$ and $a_j^{1/j}$ are also bounded sequences. Show that $\limsup_{j \to \infty} a_j^{1/j} \leq \limsup_{j \to \infty} a_{j+1}/a_j.$ [3]
- 12. Define $f: [0,1] \longrightarrow R$ by $f(x) = x^a \sin(\frac{1}{x^c})$, where c > o and $a \ge 0$ for x > 0, f(0) = 0.
 - (i) If f is continuous at 0, show that a > 0. [2]
 - (ii) If f is differentiable at 0, show that a > 1. [1]
- 13. Let $f : [0, \infty) \longrightarrow R$ be continuous and differentiable on $(0, \infty)$. Further let f(0) = 0 and f' be increasing on $(0, \infty)$. Define $g(x) = \frac{f(x)}{x}$ for x > 0. Show that g is increasing on $(0, \infty)$. [3]
- 14. Let $a_{ij} : R \longrightarrow R$ be c^{∞} functions for i, j = 1, 2, 3. Let $\alpha(x) = \det [(a_{ij}(x))]_{i,j}.$

Show that the derivative of α can be written as a sum of three determinants involving a_{ij} and its derivatives. Be as explicit as possible.

$$[4]$$

15. Let $f : R \longrightarrow R$ be any C^2 function *i.e.*, f, f', f'' are all continuous. Assume that $M_0 = \sup_x |f(x)|$ and $M_2 = \sup_x |f''(x)|$ are both finite. Show that f' is a bounded function. Put $M_1 = \sup_x |f'(x)|$. Show that $M_1^2 \le 4M_0 M_2$.

- 16. Let a_1, a_2, \cdots be a sequence of reals with $\sum a_j$ convergent. Let $n_1 < n_2 < n_3 < \cdots$. Put $b_1 = a_1 + a_2 + \cdots + a_{n_1}$, $b_2 = a_{n_1+1} + a_{n_1+2} + \cdots + a_{n_2}$.
 - $b_3 = a_{n_2+1} + a_{n_2+2} + \dots + a_{n_3}$, etc.

Show that the series $b_1 + b_2 + \cdots$ is convergent and converges to $\sum a_r$. [2] 17. Show that any disjoint collection of bounded intervals each of positive length is finite or countable.

$$[2]$$

18. Let $f : (a,b) \longrightarrow R$ be continuous every where and differentiable at x_0 in (a,b). Let $x_0 < a_n < b_n$ and $b_n \longrightarrow x_0$, if $\frac{b_n - x_0}{b_n - a_n}$ is a bounded sequence, show that $\frac{f(b_n) - f(a_n)}{b_n - a_n} \longrightarrow f'(x_0)$. [2]